Crystallographic Studies of Metal-Nucleotide Base Complexes. I. Triclinic Bis-(6-aminopurine)copper(II) Tetrahydrate

By Einar Sletten*
Department of Biological Structure, University of Washington, Seattle, Washington, 98105, U.S.A.

(Received 1 July 1968)

Abstract

Triclinic bis-(6-aminopurine)copper(II) tetrahydrate crystallizes in space group $P \overline{\mathrm{I}}$ with $Z=2$ and $a=$ $9.458, b=10 \cdot 452, c=9.410 \AA$ and $\alpha=102 \cdot 98, \beta=116 \cdot 58, \gamma=79.81^{\circ}$. The crystal structure has been established by a three-dimensional single crystal X-ray analysis. The atomic parameters were refined by full-matrix least-squares; the final R is 0.053 for 2614 observed reflections measured on a manually operated diffractometer with Mo $K \alpha$ radiation. The complex is a dimer and geometrically resembles copper(II) acetate monohydrate. The four atoms closest to the copper ion are situated in the basal plane of an octahedron; two of these are the $\mathrm{N}(3)$ atoms in the pyrimidine rings (mean $\mathrm{Cu}-\mathrm{N}(3)$ distance $2.032 \AA$) and the other two, the $\mathrm{N}(9)$ atoms in the imidazole rings (mean $\mathrm{Cu}-\mathrm{N}(9)$ distance $2.007 \AA$). The copper ion is displaced $0.27 \AA$ out of the equatorial plane toward an apical coordinated water molecule ($\mathrm{Cu}-\mathrm{O}, 2 \cdot 195 \AA$). The sixth position in the octahedron is occupied by another copper ion at $2.949 \AA$. The structure is disordered and for this reason the geometry of the adenine ligands is less well established. The structure of the complex is discussed in relation to the magnetic properties of the compound.

Introduction

In recent years, much effort has been directed toward clarifying the role of purine bases in complexes with bivalent cations. Cheney, Freiser \& Fernando (1959) tried to establish the structure of purine derivative complexes of metal ions by titration methods. Earlier, Harker \& Freiser (1958) had suggested that the most probable chelating sites in a $2: 1$ adenine-copper complex were the nitrogen atom $\mathrm{N}(7)$ and the amino group substituted on $\mathrm{C}(6)$ (I).

(I)

Weiss \& Venner (1966) have carried out extensive synthetic work on transition metal complexes of purine derivatives. They concluded that the chelating sites of copper adenine complexes are probably the nitrogen atoms $\mathrm{N}(3)$ and $\mathrm{N}(9)$.

The present structure investigation is the first in a programme of crystallographic studies of metal-

[^0]nucleotide base complexes. A preliminary report on the structure has appeared (Sletten, 1967).

Experimental

Bis-(6-aminopurine)copper(II) tetrahydrate was crystallized from a 10% ethanol-water mixture in the form of blue-violet, opaque prisms. The crystals turn into powder when dried over silica gel. The chemical analysis of the dried compound indicates three molecules of water per formula unit (Weiss \& Venner, 1963). Weissenberg photographs showed that the crystals belong to a triclinic space group. The density measured by floatation in a mixture of 1,1,2,2-tetrabromoethane and carbon tetrachloride indicates four molecules of water per formula unit.

The compound also crystallizes in a monoclinic form from a 50% p-dioxane-water solution. This modification is unstable when exposed to air.

Cell dimensions for each crystal form were determined by least-squares treatment of 2θ settings measured on the diffractometer (Mo $K a$ radiation, $\lambda=$ $0.71069 \AA$).

By comparing the dimensions of the monoclinic cell with those of the C-centered triclinic cell, it is noticed that the major difference is roughly a doubling of the unit translation along a.

Crystal data

Triclinic form
$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{5}\right)_{2} \mathrm{Cu} .4 \mathrm{H}_{2} \mathrm{O}$
Space group:

$P \overline{1}$	$C \overline{1}$
$Z=2$	$Z=4$

Monoclinic form:
$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{5}\right)_{2} \mathrm{Cu} .3 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ Space group:
I2, Im or $I 2 / m$ $Z=8$

$a=9 \cdot 458(2)$	$a^{\prime}=9.917(2) \AA$	$a=17 \cdot 209(3) \AA$
$b=10 \cdot 452(2)$	$b^{\prime}=16.052(3)$	$b=17.636(4)$
$c=9.410$ (2)	$c^{\prime}=10 \cdot 452(2)$	$c=11.020$ (2)
$\alpha=102.98(2)^{\circ}$	$\alpha^{\prime}=103.65(2)^{\circ}$	$\beta=92.01(1)^{\circ}$
$\beta=116.58(2)$	$\beta^{\prime}=92 \cdot 55(1)$	
$\gamma=79.81(1)$	$\gamma^{\prime}=90 \cdot 32(3)$	
$V_{p_{\overline{1}}}=807.54 \AA$		$V=3342 \cdot 50 \AA^{3}$
$D_{x}=1.66 \mathrm{g.cm}$		$D_{x}=1.57 \mathrm{g.cm}{ }^{-3}$
$D_{m}=1.68 \mathrm{~g} . \mathrm{cm}$		$D_{m}=1.56 \mathrm{~g} . \mathrm{cm}^{-3}$

Data collection

The crystal used for data collection had dimensions of $0.15 \times 0.20 \times 0.40 \mathrm{~mm}$ and was mounted along the needle axis. Integrated intensities were measured by the moving-crystal moving-counter technique using Nb -filtered Mo $K \alpha$ radiation. The scan ranges were calculated according to the relation $\Delta 2 \theta=A+B \tan \theta$ (Alexander \& Smith, 1964). The crystal had fairly large mosaic spread and the constant A was assigned a value of $2 \cdot 4^{\circ}$, derived from measurements of the scan range sufficient for strong, low ordered reflections. The constant B was set equal to $1 \cdot 0^{\circ}$, a value which has been found to be satisfactory for Mo radiation.

Within the sphere of reflection, limited at $\sin \theta / \lambda$ $=0 \cdot 6,2839$ unique reflections were measured. Of these, 225 were less than the threshold value of $\sigma_{c}, \sigma_{c}=$ $\left(N_{B_{1}}+N_{p k}+N_{B_{2}}\right)^{1 / 2}$ where $N_{B_{1}}$ and $N_{B_{2}}$ are the background counts on each side of the peak and $N_{p k}$ is the counts in a scan. The estimated error in the net intensity of each reflection is $\sigma_{I}=\left[\sigma_{c}^{2}+\left(0 \cdot 01 \sigma_{c}^{2}\right)^{2}\right]^{1 / 2}$. The data were corrected for Lorentz and polarization effects and coincidence loss (Sletten, Sletten \& Jensen, 1969). Absorption correction was not made. As a result, the structure factors suffer from absorption effects; the minimum reduction, occurring at low 2θ, is 11% and the maximum reduction, at a 2θ of 50°, is somewhat less than 18%. The standard deviation in the structure factors was taken as $\sigma_{F}=\left[F^{2}+\sigma_{I}(L p)^{-1}\right]^{1 / 2}-F$.

Structure determination

The copper ion was located by a three-dimensional Patterson synthesis, and a Fourier synthesis based on the phases determined by the heavy atom, revealed the position of the two adenine ligands and the water molecule $O(1)$ coordinated to copper.

The noncoordinating water molecules could not be located unambiguously in the first electron density map. Five peaks with appreciably lower electron density than the coordinated water molecule $\mathrm{O}(1)$ were found. A succeeding Fourier synthesis based on the phases determined by the heavy atom, the atoms in the adenine ligands and $O(1)$ showed essentially the same features. One peak close to a center of symmetry and two other peaks only $1 \AA$ apart indicated the presence of disordered water molecules. Oxygen atoms with multiplicities 0.5 were assigned to these sites, while
oxygen atoms of unit multiplicities were initially assigned to the remaining two sites. Structure factor calculations were based on the following scattering curves: copper(II) ion, Watson \& Freeman (1961); oxygen, nitrogen, carbon, Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955); hydrogen, Stewart, Davidson \& Simpson (1965). All calculations were carried out on an IBM 7094 computer with programs from X-ray 63 (Stewart, 1964).
The structure with isotropic thermal parameters was refined in four cycles of full-matrix least-squares to an R of $0.16\left[R=\Sigma\left(| | F_{o}\left|-\left|F_{c}\right|\right|\right) / \Sigma\left|F_{o}\right|\right]$. The function minimized was $\left.\Sigma w\left[\left|F_{o}\right|-\mid(1 / k) F_{c}\right]\right]^{2}$ where $w=1 / \sigma_{F}^{2}$. In the last two isotropic cycles the multiplicities of the disordered water molecules were allowed to vary while the thermal parameters were kept constant. The multiplicities arrived at are listed in Table 2(a). Owing to limited data $(\sin \theta / \lambda<0.6)$ the multiplicities and the thermal parameters could not be refined simultaneously. Thus only a rough estimate of the occupancies of the different oxygen sites can be obtained. At this stage, a difference map gave the positions of the hydrogen atoms attached to the adenine ligands and the coordinated oxygen $O(1)$. However, one hydrogen atom in each of the amino groups had suspiciously large electron density (0.8 e. \AA^{-3}) while the other amino hydrogen barely showed up ($0.25 \mathrm{e} . \AA^{-3}$).
Two cycles of refinement with anisotropic thermal parameters assigned to the non-hydrogen atoms brought the R to 0.075 . The hydrogen atoms were included in the structure factor calculation but not refined. In the following cycle only the atoms which carry hydrogens were included in the refinement together with the attached hydrogen atoms. The R decreased to 0.065 and the hydrogen atoms attached to the rings and to the oxygen $O(1)$ refined to reasonable positions and B values. The four hydrogen atoms in the amino groups, however, behaved differently. The two atoms which appeared with unusually large electron densities in the difference map $[\mathrm{H}(612), \mathrm{H}(622)]$ had B values of only $1.2-1.5 \AA^{2}$ and refined to positions which did not comply with the geometry of $s p^{2}$ hybridized nitrogen atoms. The two other hydrogen atoms $[\mathrm{H}(611)$ and $\mathrm{H}(621)]$ showed high thermal motion and refined to positions which were not physically meaningful.
A calculation of bond lengths and angles at this stage gave some peculiar values for one of the adenine ligands. The carbon-carbon bonds $C(41)-C(51)$ and $\mathrm{C}(51)-\mathrm{C}(61)$ were calculated at $1.55 \AA$ and $1.21 \AA$, respectively, values deviating appreciably from the expected value of $1 \cdot 4 \AA$. Furthermore, the bond C(61)$\mathrm{N}(61)$ expected to be $1.35 \pm 0.05 \AA$ was calculated to be $1.52 \AA$. The other dimensions in ligand (1) were within the expected range and agreed well with those calculated for ligand (2). A three-dimensional difference map showed alternate positive and negative regions of approximately $0 \cdot 9 \mathrm{e} . \AA^{-3}$ in the vicinity of atoms $\mathrm{C}(51)$ and $\mathrm{C}(61)$, a pattern indicating that each of the two atoms tried to match two discrete peaks of electron
density. In the corresponding region in ligand (2) two 'satellite' peaks, $0.4 \mathrm{e} . \AA^{-3}$ in height, were found; however, in this case, the peaks were clearly resolved from the adjacent carbon atoms $C(52)$ and $C(62)$, thus explaining why the geometry of this ligand was not noticeably distorted.

To account for the features described above, some kind of disorder was assumed to be present in the crystal. Accordingly, fractions of carbon atoms were assigned to the four 'satellite' peaks and refined isotropically together with the adjacent atoms. Tentatively, multiplicities of 0.2 were used for $C\left(51^{\prime}\right)$ and $C\left(61^{\prime}\right)$ in ligand (1) and 0.1 for $\mathrm{C}\left(52^{\prime}\right)$ and $\mathrm{C}\left(62^{\prime}\right)$ in ligand (2). After two cycles of refinement, the geometry of ligand (1) became quite reasonable, while no significant changes occurred in ligand (2).

The disorder may be explained as shown in Fig. 1. With $\mathrm{N}(3)$ and $\mathrm{N}(9)$ as donor atoms, each of the adenine ligands in the dimer may chelate to the copper
ions in two different orientations relative to the other ligands. The Figure shows that the adenine molecules in the two orientations overlap almost completely; the only atoms which do not coincide are $C(5), C(6)$ and $\mathrm{N}(6)$. If the assumption is made that the oversized hydrogen atom in each of the amino groups is actually the non-coinciding nitrogen atom $\mathrm{N}\left(6^{\prime}\right)$, the disorder is explained by the occurrence of differently oriented ligand pairs in the crystal.
To determine the approximate amount of each configuration, the multiplicities of the non-coinciding atoms in each ligand were allowed to vary during two cycles of refinement. As a starting point, the atoms $\mathrm{C}(51), \mathrm{C}(61), \mathrm{N}(61)$ were given multiplicities $0 \cdot 8$, while the components of the anisotropic thermal motion were reduced by 20%. The corresponding atoms in ligand (2) were assigned multiplicities 0.9 and the B values were reduced by 10%. The thermal parameters were kept constant during the refinement of the multi-

Table 1. Fractional atomic coordinates

	C-centered cell			Primitive cell		
	x^{\prime} / a^{\prime}	y^{\prime} / b^{\prime}	z^{\prime} / c^{\prime}	x / a	y / b	z/c
Cu^{2+}	$0 \cdot 24150$ (6)	$0 \cdot 15797$ (3)	$0 \cdot 43442$ (5)	0.0834 ?	$0 \cdot 43442$	$0 \cdot 39947$
N(11)	0.65916 (46)	$0 \cdot 38523$ (27)	$0 \cdot 45774$ (42)	0.2739	0.4577	1.0444
C(21)	$0 \cdot 54178$ (57)	$0 \cdot 39440$ (31)	$0 \cdot 51607$ (49)	0.1474	0.5161	0.9362
N(31)	$0 \cdot 45009$ (39)	0.33135 (24)	$0 \cdot 50255$ (35)	$0 \cdot 1187$	$0 \cdot 5025$	0.7814
C(41)	$0 \cdot 49443$ (44)	$0 \cdot 25787$ (30)	$0 \cdot 42670$ (40)	0.2366	0.4267	0.7523
C(51)	0.61750 (71)	$0 \cdot 24083$ (51)	$0 \cdot 36496$ (65)	0.3767	$0 \cdot 3650$	$0 \cdot 8583$
C(61)	0.70548 (82)	$0 \cdot 30685$ (54)	$0 \cdot 37869$ (75)	0.3985	0.3787	1.0123
N(61)	$0 \cdot 82583$ (61)	$0 \cdot 29749$ (55)	$0 \cdot 31776$ (76)	0.528 .3	0.3178	$1 \cdot 1233$
N(71)	$0 \cdot 63317$ (48)	$0 \cdot 15511$ (27)	$0 \cdot 29123$ (38)	0.4781	0.2912	0.7883
C(81)	0.51319 (55)	$0 \cdot 12601$ (32)	$0 \cdot 31700$ (45)	0.3872	$0 \cdot 3170$	0.6392
N(91)	$0 \cdot 43067$ (39)	$0 \cdot 18150$ (23)	$0 \cdot 39261$ (34)	$0 \cdot 2492$	$0 \cdot 3926$	0.6122
$\mathrm{N}(12)$	$0 \cdot 10089$ (56)	$0 \cdot 17914$ (30)	$0 \cdot 04923$ (43)	0.0782	0.9508	$0 \cdot 7200$
C(22)	$0 \cdot 14332$ (67)	$0 \cdot 15167$ (32)	$0 \cdot 15392$ (48)	0.0083	0.8461	0.7050
N(32)	$0 \cdot 17832$ (40)	$0 \cdot 19890$ (23)	$0 \cdot 27250$ (33)	$0 \cdot 0206$	0.7275	0.6228
C(42)	$0 \cdot 16675$ (44)	$0 \cdot 28327$ (28)	$0 \cdot 27760$ (39)	0.1165	0.7224	$0 \cdot 5500$
C(52)	$0 \cdot 12141$ (65)	$0 \cdot 31820$ (56)	$0 \cdot 17377$ (60)	0.1968	0.8262	$0 \cdot 5604$
C(62)	$0 \cdot 08838$ (62)	$0 \cdot 26141$ (41)	0.05331 (59)	$0 \cdot 1730$	0.9467	0.6502
N(62)	$0 \cdot 04240$ (65)	$0 \cdot 28674$ (43)	-0.05543 (49)	$0 \cdot 2443$	1.0554	0.6709
N(72)	$0 \cdot 11976$ (58)	0.40817 (29)	0.21413 (43)	$0 \cdot 2884$	0.7859	0.4721
C(82)	$0 \cdot 16364$ (71)	$0 \cdot 41982$ (34)	$0 \cdot 33837$ (52)	$0 \cdot 2562$	0.6616	$0 \cdot 4165$
$\mathrm{N}(92)$	$0 \cdot 19399$ (39)	$0 \cdot 34954$ (23)	$0 \cdot 38319$ (33)	$0 \cdot 1555$	0.6168	$0 \cdot 4565$
O(1)	$0 \cdot 24075$ (62)	$0 \cdot 01956$ (40)	$0 \cdot 34641$ (51)	0.2212	$0 \cdot 3464$	$0 \cdot 2603$
O(2)	0.4804 (25)	0.0227 (9)	-0.0079 (17)	$0 \cdot 4577$	0.9921	$0 \cdot 5030$
$\mathrm{O}(31)$	0.7834 (34)	0.0348 (11)	$0 \cdot 1077$ (20)	$0 \cdot 7485$	0.1077	0.8182
$\mathrm{O}(32)$	0.8474 (12)	0.0953 (11)	$0 \cdot 1529$ (12)	0.7522	$0 \cdot 1529$	0.9427
$\mathrm{O}(41)$	0.7633 (19)	$0 \cdot 4325$ (8)	$0 \cdot 0992$ (11)	$0 \cdot 3308$	0.0992	$0 \cdot 1958$
$\mathrm{O}(42)$	0.4754 (10)	$0 \cdot 4415$ (6)	$0 \cdot 1847$ (8)	0.0339	$0 \cdot 1847$	0.9168
C(51)	0.6173 (23)	$0 \cdot 3040$ (14)	$0 \cdot 4074$ (19)	0.3133	0.4073	0.9214
C(61)	0.6993 (20)	$0 \cdot 2373$ (12)	$0 \cdot 3194$ (17)	$0 \cdot 4620$	$0 \cdot 3194$	0.9366
$\mathrm{N}\left(61^{\prime}\right)$	0.8265 (25)	$0 \cdot 2466$ (14)	$0 \cdot 2731$ (22)	0.5798	$0 \cdot 2731$	1.0731
C(52')	$0 \cdot 1112$ (55)	$0 \cdot 2755$ (31)	$0 \cdot 1471$ (61)	$0 \cdot 1643$	0.8529	0.6133
C(62')	0.0968 (41)	$0 \cdot 3543$ (26)	$0 \cdot 1221$ (41)	0.2574	0.8779	0.5489
$\mathrm{N}(62)$	0.0471 (33)	0.3583 (21)	-0.0053 (30)	$0 \cdot 3112$	1.0052	0.5945
H(21)	0.5324 (47)	$0 \cdot 4473$ (31)	0.5709 (45)	$0 \cdot 0852$	0.5709	0.9797
H(81)	0.4915 (55)	0.0656 (36)	$0 \cdot 2756$ (52)	0.4259	0.2756	$0 \cdot 5571$
H(611)	0.889	$0 \cdot 355$	0.323	0.5340	$0 \cdot 3230$	$1 \cdot 2440$
H(22)	$0 \cdot 1483$ (49)	0.0914 (33)	$0 \cdot 1404$ (44)	-0.0568	0.8594	0.7603
H(82)	$0 \cdot 1557$ (56)	$0 \cdot 4705$ (36)	$0 \cdot 3979$ (53)	$0 \cdot 3148$	0.6021	0.3739
H(621)	0.018	0.236	-0.129	$0 \cdot 218$	$1 \cdot 129$	0.746
H(011)	0.7070 (82)	0.4807 (53)	$0 \cdot 3671$ (76)	-0.2263	0.6329	0.8124
H(012)	0.7461 (69)	$0 \cdot 4923$ (42)	$0 \cdot 2792$ (69)	-0.2539	0.7208	0.7616

Fig. 1. The molecule drawn in full line is ligand (1) connected to the copper ions, as viewed along the c axis in the C centercd cell. The molecule in dashed lines is arrived at by rotating ligand (1) 180° around a line lying in the plane of the ligand and going through the center of symmetry, normal to the $\mathrm{Cu}-\mathrm{Cu}$ 'bond'. The circles with crosses in them are the refined positions of the disordered atoms $\mathbf{C}\left(51^{\prime}\right)$ and C(61').
plicities, but were allowed to adjust during a final leastsquares cycle.

Before the final least-squares cycle, a difference synthesis was calculated in an attempt to locate the hydrogen atoms attached to the disordered water molecules. Some of these could be located with reasonable certainty, although there were other equally prominent peaks in the regions close to the oxygen atoms, which could not be accounted for. The occurrence of additional peaks may imply that the scheme of disorder of the water molecules is more complex than the model used in the least-squares refinement. Accordingly, the hydrogen atoms on the non-coordinated water molecules were not included in the structure factor calculation.

In the next least-squares cycle all shifts in parameters for the atoms in the complex unit were less than one standard deviation, and the refinement was terminated at an R of 0.053 , even though some of the non-coordinated water molecules had shifts in coordinates of nearly 2σ and shifts in thermal parameters of close to 4σ. The final goodness of fit of 1.97 is higher than the value expected for this type of compound, and may reflect the difficulty in assigning a proper model to the disordered structure.

The final coordinates are given in Table 1. The anisotropic and isotropic thermal parameters together with the refined multiplicities are given in Tables $2(a)$ and 2(b). The observed and calculated structure factors are listed in Table 3.

Table 2(a). Anisotropic thermal parameters referred to the C-centered cell, and multiplicities of disordered atoms

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}	M
Cu^{2+}	$3 \cdot 63$ (3)	$2 \cdot 86$ (2)	2.73 (2)	$0 \cdot 11$ (2)	0.04 (2)	1.04 (2)	
N(11)	$4 \cdot 64$ (13)	4.58 (20)	$5 \cdot 21$ (21)	-1.05 (18)	-0.97 (17)	2.04 (17)	
C(21)	$4 \cdot 82$ (28)	4.41 (22)	4.92 (24)	-1.04 (21)	-0.64 (21)	2.09 (19)	
$\mathrm{N}(31)$	$3 \cdot 86$ (19)	$3 \cdot 89$ (17)	4.06 (17)	-0.87 (15)	-0.70 (14)	2.04 (14)	
C(41)	$2 \cdot 90$ (19)	$5 \cdot 31$ (22)	3.06 (17)	0.72 (17)	$0 \cdot 60$ (14)	$2 \cdot 24$ (16)	
C(51)	$3 \cdot 57$ (33)	6.38 (44)	4.03 (28)	0.64 (29)	0.02 (24)	$2 \cdot 40$ (29)	0.79
C(61)	$3 \cdot 80$ (39)	7.56 (49)	5.57 (36)	-0.13 (33)	-0.51 (30)	$3 \cdot 27$ (35)	0.76
N(61)	$2 \cdot 79$ (27)	9.66 (49)	$7 \cdot 77$ (43)	-0.03 (31)	1.72 (26)	4.35 (40)	0.78
N(71)	$5 \cdot 59$ (26)	$5 \cdot 12$ (20)	$3 \cdot 64$ (17)	$2 \cdot 00$ (19)	-0.06 (16)	0.75 (15)	
C(81)	$4 \cdot 60$ (27)	$5 \cdot 14$ (24)	$3 \cdot 86$ (21)	1.60 (21)	0.51 (18)	1.00 (18)	
$\mathrm{N}(91)$	3.92 (19)	$3 \cdot 85$ (17)	$3 \cdot 38$ (16)	0.98 (15)	0.23 (14)	$1 \cdot 21$ (13)	
$\mathrm{N}(12)$	7.90 (33)	$5 \cdot 44$ (24)	$4 \cdot 37$ (21)	-0.61 (22)	-1.41 (20)	$1 \cdot 68$ (17)	
C(22)	8.80 (40)	$4 \cdot 26$ (22)	$3 \cdot 84$ (23)	-0.24 (24)	-1.37 (23)	$1 \cdot 01$ (18)	
N(32)	4.53 (20)	$3 \cdot 75$ (16)	3.04 (15)	-0.01 (15)	-0.04 (13)	1.05 (12)	
C(42)	$2 \cdot 81$ (19)	4.40 (19)	$2 \cdot 86$ (16)	0.05 (16)	0.49 (14)	1.49 (14)	
C(52)	$4 \cdot 15$ (31)	$5 \cdot 17$ (37)	$3 \cdot 63$ (27)	$0 \cdot 00$ (28)	-0.06 (21)	1.89 (28)	0.88
C(62)	4.56 (31)	$6 \cdot 10$ (33)	$3 \cdot 30$ (25)	-0.10 (25)	-0.13 (20)	1.85 (22)	0.90
N(62)	$7 \cdot 47$ (38)	$9 \cdot 22$ (39)	$3 \cdot 79$ (22)	0.44 (30)	-1.11 (22)	2.91 (24)	$0 \cdot 87$
N(72)	$9 \cdot 29$ (36)	4.92 (22)	$4 \cdot 22$ (21)	1.33 (22)	-0.75 (21)	1.84 (17)	
C(82)	$9 \cdot 26$ (44)	$4 \cdot 08$ (23)	$3 \cdot 88$ (23)	$1 \cdot 12$ (25)	-0.54 (24)	1.35 (19)	
N(92)	4.43 (19)	3.93 (16)	3.00 (15)	$0 \cdot 29$ (14)	0.06 (13)	1.52 (13)	
$\mathrm{O}(1)$	11.08 (45)	2.95 (20)	$4 \cdot 87$ (26)	-0.35 (23)	1.66 (26)	0.51 (19)	
O(2)	18.8 (14)	$8 \cdot 4$ (10)	$7 \cdot 2$ (5)	$0 \cdot 9$ (9)	-2.2 (6)	$2 \cdot 8$ (6)	0.56
$\mathrm{O}(31)$	$26 \cdot 4$ (22)	$7 \cdot 2$ (8)	12.7 (10)	$0 \cdot 2$ (10)	12.4 (13)	$0 \cdot 0$ (7)	0.48
$\mathrm{O}(32)$	$7 \cdot 1$ (6)	14.8 (10)	10.0 (6)	$0 \cdot 5$ (6)	4.0 (5)	2.4 (6)	0.61
$\mathrm{O}(41)$	33.8 (20)	$\begin{array}{r}7.7 \\ \hline 15\end{array}$	$3 \cdot 0$ (4)	$9 \cdot 3$ (9)	-0.4 (7)	-0.9 (4)	0.51 0.74
$\mathrm{O}(42)$	$13 \cdot 7$ (9)	$15 \cdot 3$ (7)	$8 \cdot 8$ (6)	$2 \cdot 5$ (6)	-3.9 (6)	-3.9 (5)	0.74

Table2(b).Isotropic thermal parameters and multiplicities

	B	M
$\mathrm{C}\left(51^{\prime}\right)$	$2 \cdot 8(4)$	$0 \cdot 28$
$\mathrm{C}\left(61^{\prime}\right)$	$3 \cdot 6(3)$	$0 \cdot 30$
$\mathrm{~N}\left(61^{\prime}\right)$	$5 \cdot 1(5)$	$0 \cdot 23$
$\mathrm{C}\left(52^{\prime}\right)$	$2 \cdot 8(7)$	$0 \cdot 13$
$\mathrm{C}\left(62^{\prime}\right)$	$4.8(7)$	$0 \cdot 13$
$\mathrm{~N}\left(62^{\prime}\right)$	$5 \cdot 1(6)$	$0 \cdot 14$
$\mathrm{H}(21)$	$3 \cdot 1(7)$	
$\mathrm{H}(81)$	$4.5(8)$	
$\mathrm{H}(611)$	15	
$\mathrm{H}(22)$	$5 \cdot 2(6)$	
$\mathrm{H}(82)$	$6 \cdot 9(9)$	
$\mathrm{H}(621)$	15	
$\mathrm{H}(011)$	$7 \cdot 2(9)$	
$\mathrm{H}(012)$	$4.5(9)$	

In Fig. 2 the electron density through the plane of ligand (l) and the electron density of the water molecules are shown projected along the c^{\prime} axis. The electron density in the plane of ligand (2) is shown pro-
jected along the a^{\prime} axis. The corresponding difference maps, based on F_{c} values excluding hydrogen atoms and the fractional atoms $\mathrm{C}\left(5^{\prime}\right), \mathrm{C}\left(6^{\prime}\right)$ and $\mathrm{N}\left(6^{\prime}\right)$, are shown in Fig. 3.

Tests to distinguish between a centric and an acentric space group

If a center of symmetry is imposed in a non-centrosymmetric unit cell, the structure may appear to be disordered. Consequently, the possibility of having an ordered, non-centric adenine-copper structure could not be ruled out on the basis of the refinement in $P \overline{1}$.

A survey of reflection statistics was carried out at this stage (Tables 4 and 5).
The results given in Tables 4 and 5 together with an $N(z)$ plot for the $h k 0$ zone gave the impression that the structure may, indeed, be noncentric. However, these

Fig.2. (a) Electron density of the copper ion and ligand (2) projected along the a axis in the C-centered cell, (b) electron density of copper ion, water molecules and ligand (1) projected along the c axis in the C-centered cell. Contours are at intervals of $4 \mathrm{e} . \AA^{-3}$ for the copper ion and of $1 \mathrm{e} . \AA^{-3}$ for the oxygen, nitrogen and carbon atoms, starting at $1 \mathrm{e} . \AA^{-3}$ (dashed).

Fig.3. Difference maps based on F_{c} values excluding hydrogen atoms and the fractional atoms, $\mathrm{C}\left(5^{\prime}\right), \mathrm{C}\left(6^{\prime}\right)$ and $\mathrm{N}\left(6^{\prime}\right)$. Contours are at intervals of $0 \cdot 2 \mathrm{e} . \AA^{-3}$ for $\mathrm{C}\left(51^{\prime}\right), \mathrm{C}\left(61^{\prime}\right)$ and $\mathrm{N}\left(61^{\prime}\right)$, and at intervals of $0 \cdot 1 \mathrm{e} . \AA^{-3}$ for the other atoms, starting at $0 \cdot 2 \mathrm{e} . \AA^{-3}$.
tests are based on a uniform distribution of equal atoms in the cell，and to account for the presence of heavy atoms，the distribution functions of Howells，

Phillips \＆Rogers（1950）were modified as suggested by Sim（1958）．The distribution of the $282 h k 0$ reflec－ tions plotted in Fig． 4 together with the modified theo－

Table 3．Observed and calculated structure factors multiplied by 10

运
为

笔

 －
路过 －

気啚品

 \＃\＃，

男

路

 ~".

 :

retical curves for centric and acentric cells, strongly indicates that the space group is $P \overline{1}$.

Table 4. Statistical average

	Exper- imental	Centro- symmetric	Noncentro- symmetric
$\langle \| E\rangle$	0.861	0.798	0.886
$\langle \| E^{2}-1\| \rangle$	0.789	0.968	0.736
$\left.\left.\langle \| E\right\|^{2}\right\rangle$	1.005	1.000	1.000

Table 5. Distribution of normalized structure factors

	$\|E\|>3$	$\|E\|>2$	$\|E\|>1$
Observed	0.07%	$1 \cdot 7 \%$	$38 \cdot 3 \%$
Centric	0.3%	$5 \cdot 0 \%$	32.0%
Noncentric	0.01%	1.8%	37.0%

Another method of testing the centrosymmetry is to refine possible ordered noncentric arrangements in space group $P 1$ by full-matrix least-squares, assigning full sized atoms to the disordered sites of low multiplicity and simultaneously moving the other atoms slightly out of their refined positions. In every attempt, regardless of configuration, the atoms $\mathrm{C}(5), \mathrm{C}(6)$ and $\mathrm{N}(6)$ in the low multiplicity sites refined to high B values, while the corresponding atoms in the pseudocentrosymmetrically related molecule refined to negative B values. This again supported the assumption of a centric cell.

Description and discussion of the structure

(a) Environment of copper

The two asymmetric units in the primitive cell form a centrosymmetric dimer in which each copper ion is octahedrally surrounded by four nitrogen atoms in the equatorial plane and a water molecule and another copper ion in the axial positions (Fig.5). Four adenine molecules form bridges between two copper ions in a windmill-shaped arrangement. The $\mathrm{Cu}-\mathrm{N}$ bond lengths are in the range $2.000 \AA-2.034 \AA$. The bonds formed to the imidazole nitrogen $N(9)$ average $2 \cdot 006 \pm$ $0.007 \AA$ while those to the pyrimidine nitrogen $\mathrm{N}(3)$ average $2.032 \pm 0.002 \AA$. This difference is significant and may reflect the larger amount of s character in the coordinating orbital of the imidazole nitrogen. The four nitrogen atoms are planar within $0.003 \AA$ (Table 6) and the copper ion is displaced from this plane by $0.27 \AA$ in a direction toward the apical water molecule at $2 \cdot 195 \AA$. The sixth 'octahedral' site is occupied by a copper ion at $2 \cdot 949 \AA$. The two copper ions in the dimer are displaced $0.19 \AA$ and $0.24 \AA$, respectively, from the least-squares plane calculated for ligand (1) but only $0.04 \AA$ and $0.03 \AA$ from the least-squares plane of ligand (2) (Table 6).

The coordination geometry of the copper-adenine complex closely resembles that found in copper(II) acetate monohydrate (Niekerk \& Schoening, 1953)
and copper(II) succinate dihydrate (O'Connor \& Maslen, 1966). In both compounds the four bridging groups are aliphatic carboxylate ions and the $\mathrm{Cu}-\mathrm{Cu}$ distance is essentially the same ($2 \cdot 64 \AA-2 \cdot 61 \AA$). The geometry of the ligands does not seem to be significantly affected by the coordination to the copper ions. The displacement of the copper ion out of the equatorial plane observed in the copper adenine complex is also found in the carboxy dimers.
Until the last few years, the $\mathrm{Cu}(\mathrm{II})$ ion has usually been associated with a preferred six-coordination, the resulting octahedral geometry being distorted as a result of the Jahn-Teller effect. More recently, however, several papers have been published describing squarepyramidal coordination, e.g. Freeman \& Szymanski (1967) and Ueki, Ashida, Sasada \& Kakudo (1967). A survey of recent literature seems to indicate that the [$4+1$] coordination is more common than usually realized, and that in the solid state truly six-coordinated copper complexes only appear as special cases caused by crystallographic symmetry requirements. When the copper ion is in a general position, it forms four short bonds in the equatorial plane and is displaced out of this plane toward an apical ligand at a somewhat longer

Fig.4. The experimental distribution $N(Z)$ for bis(6-aminopurine)copper(II) tetrahydrate (marked with circles), together with the theoretical distribution $\max _{\mathrm{i}} N(z, 1 \cdot 30)$ and. $\max _{1} N(z, 1 \cdot 30)$ for centric and noncentric cells respectively.
distance. Very often there is a sixth 'ligand' apparently at a nonbonding distance completing the octahedron. In the monomers the distance to the apical water molecule is appreciably longer than the corresponding distance in the dimers. The same trend is also observed when there is a close apical ligand other than water, e.g. pyridine.

Direct interaction between the copper ions in the bridged dimers does not produce a coordination scheme substantially different from that found in monomers. The copper-copper separation in the dimers seems to be determined by the width of the 'bite' of the ligand, though there is an indication of a slight shortening of the $\mathrm{Cu}-\mathrm{Cu}$ distance in the copperadenine complex. This can be seen by constructing a model where the coordinating orbitals on $\mathrm{N}(3)$ and $\mathrm{N}(9)$ have directions halving the angles $\mathrm{C}(2)-\mathrm{N}(3)-$ $\mathrm{C}(4)$ and $\mathrm{C}(4)-\mathrm{N}(9)-\mathrm{C}(8)$, respectively, resulting in a $\mathrm{Cu}-\mathrm{Cu}$ separation of approximately $3.07 \AA$ which is $0 \cdot 12 \AA$ longer than the observed distance. The out-ofplane displacement in the model is $0 \cdot 35 \AA$. It is difficult to say if the apparent shortening reflects a direct metalmetal interaction, a tendency toward an out-of-plane displacement characteristic of $[4+1]$ coordination, or if it is simply brought about by packing forces in the crystal. It should be mentioned that off-center displacement is a phenomenon which is observed not only in five coordinated copper complexes. Recently, Megaw (1968) has proposed a theory which relates such displacement in octahedral complexes to relief of tension caused by repulsion between ligands. Orgel (1958) describes the effect as loosening of the central ion as the stereochemistry changes from octahedral to tetrahedral symmetry, when the metal ion becomes 'smaller'.

A common feature of the copper(II) carboxylate dimers is the observed subnormal magnetic moment, which indicates an anti-paramagnetic spin-pairing of the odd electrons on the copper ions. Two mechanisms are possible for this spin-pairing, either a direct interaction through overlapping copper orbitals or an electron migration through the bridging groups, so-called superexchange. Several theoretical approaches have

Table 6. Deviations of the atoms from different least squares planes
x, y and z in the equations of the planes are in fractions of unit cell edges. σ is the standard deviations of the atoms from the plane.

Deviations from plane (\AA)

(I)	$\mathrm{N}(91)$	$\mathrm{N}(32)$	(ii)	$\mathrm{N}(31)$ (ii)	$\mathrm{N}(92)$	Cu							
	-0.002	+0.002	-0.002	+0.002	+0.268								
(II)	$\mathrm{N}(11)$	$\mathrm{C}(21)$	$\mathrm{N}(31)$	$\mathrm{C}(41)$	$\mathrm{C}(51)$	$\mathrm{C}(61)$	$\mathrm{N}(61)$	$\mathrm{N}(71)$	$\mathrm{C}(81)$	$\mathrm{N}(91)$	Cu	Cu (ii)	
	+0.004	-0.016	+0.007	+0.008	-0.018	-0.008	-0.023	-0.015	-0.011	+0.018	+0.189	+0.241	
(III)	$\mathrm{N}(12)$	$\mathrm{C}(22)$	$\mathrm{N}(32)$	$\mathrm{C}(42)$	$\mathrm{C}(52)$	$\mathrm{C}(62)$	$\mathrm{N}(62)$	$\mathrm{N}(72)$	$\mathrm{C}(82)$	$\mathrm{N}(92)$	Cu	$\mathrm{Cu}(\mathrm{ii)}$	
	-0.004	+0.006	+0.008	-0.007	+0.002	-0.010	+0.004	+0.006	+0.004	+0.008	+0.043	+0.029	

(I) Square of ligand atoms, $\mathrm{N}(91), \mathrm{N}(32)$ (ii), $\mathrm{N}(31)$ (ii), $\mathrm{N}(92), \sigma=0.003$ Equation: $0.0661 x+14.562 y+2.024 z=3.463$
(II) Ligand (1), $\sigma=0 \cdot 015$. Equation: $3 \cdot 809 x-7 \cdot 127 y+9 \cdot 137 z=3 \cdot 952$
(III) Ligand (2), $\sigma=0.007$. Equation: $9 \cdot 476 x+1 \cdot 688 y-3 \cdot 490=1 \cdot 083$
been made in order to explain magnetic and spectroscopic properties in these types of compounds. Figgis \& Martin (1956) originally proposed a bonding scheme where the $d_{x^{2}-y^{2}}$ orbitals on the copper ions overlap to form a weak δ-bond. Hansen \& Ballhausen (1965) have suggested a model of two weakly coupled chromophores which would account for the spectroscopic properties.

At a $\mathrm{Cu}-\mathrm{Cu}$ distance of $2.64 \AA$ the calculated overlap integral for a δ-bond is only 0.003 (Figgis \& Martin, 1956) and Dubicki \& Martin (1966) point out that a δ-bond at this distance is virtually non-bonding. In the copper-adenine complex where the $\mathrm{Cu}-\mathrm{Cu}$ separation is even larger $(2.949 \AA)$ the proposed δ-bonding would probably be vanishingly small. The subnormal magnetic moment of copper acetate monohydrate ($\mathrm{Cu}-\mathrm{Cu}$ $2 \cdot 64 \AA$) has been measured to be $1 \cdot 42 \mathrm{Bohr}$ magnetons. The corresponding value for copper succinate dihydrate which has a significantly shorter copper-copper distance ($2.61 \AA$) is 1.36 B.M. (Figgis \& Martin, 1966). If as indicated above, the anti-paramagnetic spin-pairing strongly depends on the magnitude of the coppercopper separation, the magnetic moment for the cop-per-adenine complex should be found in the range 2.11-2.21 B.M. which has been predicted for strongfield square-pyramidal copper(II) complexes on the basis of molecular orbital calculations (Boudreaux, 1963). If, on the other hand, the spin-pairing depends mainly on a super-exchange mechanism, one would expect a μ value below those observed for the carboxylate dimers, since the pseudo-aromatic adenine ligands are probably more favorable toward an electron transfer than the aliphatic carboxy groups. Recently a magnetic moment in the range $2 \cdot 1-2 \cdot 2 \mathrm{~B} . \mathrm{M}$. has been calculated for the copper adenine compound based on susceptibility measurements at room temperature (Emerson, 1968). Because of the very small sample available the measurements were made by a technique
not previously applied to weakly paramagnetic compounds such as this one, and hence the reliability of this result is still very uncertain. However, the value obtained indicates that the adenine ligands do not promote super exchange and that the copper-copper distance is too long for direct spin-pairing.

(b) Geometry of the adenine ligands

In Fig. 6 are shown the molecular dimensions of the two crystallographically independent adenine ligands. The two hydrogen atoms $\mathrm{H}(611)$ and $\mathrm{H}(621)$ in the amino groups have been located in a difference map but not refined. The two other hydrogen atoms in the amino groups $\mathrm{H}(612)$ and $\mathrm{H}(622)$, which nearly coincide

Fig.5. Environment of the copper ion.

Fig.6. Bond distances and angles with the corresponding standard deviations in parentheses.
with the disordered nitrogen atoms $\mathrm{N}(61)$ and $\mathrm{N}(62)$, are also indicated on the drawing.

Owing to the disorder the dimensions are not as accurate as the standard deviations indicate. The chemically equivalent bond lengths $N(11)-C(61)$ and $N(12)-C(62)$ differ by almost 12 standard deviations; however, the other bond lengths agree within three standard deviations. Ligand (2) is less affected by the disorder and may be close to the true structure. Nevertheless, it is not felt justified to draw any conclusions about the effect of the metal bonding on the purine skeleton.

Molecular packing and hydrogen bond network

In Fig. 7 three unit cells are shown, each containing a centrosymmetric configuration of the complex. In cell (b) ligand pair (1) has been rotated 180° relative to the same pair in cell (a) while in cell (c) ligand pair (2)

Fig.7. Unit cells viewed along a, showing different arrangements of ligand pairs.
has been rotated relative to (a). A fourth configuration is arrived at by simultaneously rotating both ligand pairs. All four combinations are probably present in the crystal, though the exact amount of each of them cannot be determined. The multiplicities derived from the least-squares refinement imply approximately 75% of position $1(a)$ and 88% of position $2(a)$ in the crystal (cf. Fig.7). Accordingly, configuration (a) occurs most frequently while the amount of each of the other configurations is considerably less. A close examination of Weissenberg and precession photographs gave no indication of a superlattice, which indicates that the four possible configurations in the cell are randomly distributed throughout the crystal.
The occurrence of different configurations makes a description of the hydrogen bonding network complicated. In Fig.8, a cell containing configuration (a) and the water molecules to which the complex unit is hydrogen bonded, is shown viewed along the a axis. Each adenine ligand may participate in four different hydrogen bonds. In configuration (a) only three of these are actually formed; one of the hydrogen atoms on each amino group does not participate in hydrogen bonding. Ligand (1) forms one hydrogen bond to the water molecule coordinated to copper [$\mathrm{N}(11) \ldots \mathrm{H}-$ $\mathrm{O}(1)$] and two bonds to the disordered water molecule $\mathrm{O}(32)[\mathrm{N}(71) \ldots \mathrm{H}-\mathrm{O}(32)$ and $\mathrm{N}(61)-\mathrm{H} \ldots \mathrm{O}(32)]$. Ligand (2) is bonded to water molecule $\mathrm{O}(42)$ [$\mathrm{N}(12) \ldots \mathrm{H}-$ $\mathrm{O}(42)$] and to the disordered water molecule $\mathrm{O}(2)$ $[\mathrm{N}(72) \ldots \mathrm{H}-\mathrm{O}(2)$ and $\mathrm{N}(62)-\mathrm{H} \ldots \mathrm{O}(2)]$. The way

Fig. 8. The structure viewed along the a axis in the primitive cell.
ligand (2) is situated relative to a center of symmetry leads to an alternating hydrogen bonding to the water oxygen $O(2)$. In addition to the hydrogen bonds involving the adenine ligands, there exists bonding between the water molecules as shown in Fig. 8.

An explanation of the occurrence of different configurations of the complex in the unit cells may be found by considering the resulting packing energies in the crystal. By rotating the ligand pairs, hydrogen bond acceptors $\mathrm{N}(1)$ and $\mathrm{N}(7)$ are interchanged while the donor nitrogens $\mathrm{N}(6)$ are moved approximately $1 \AA$ from their previous positions. The arrangement of hydrogen bonds in this case is shown in Fig.9. The major change from configuration (a) is the involvement of the disordered water molecule $\mathrm{O}(31)$ instead of $\mathrm{O}(32)$ in the hydrogen bonding scheme $[\mathrm{O}(31) \ldots \mathrm{O}(32)$, $1 \cdot 14 \AA$]. Except for the very weak hydrogen bond $\mathrm{N}(61)-\mathrm{H} . \mathrm{O} \mathrm{O}(32)=3 \cdot 31 \AA$ which is disrupted, the number of hydrogen bonds remains the same. Accordingly, the rather drastic rearrangement of ligands in the crystal does not seem to produce sufficient change in the packing energy to prevent the compound from crystallizing as a mixture of 'rotamers'. A similar type of disorder is reported for diindenyliron (Trotter, 1958) where two different orientations of the indenyl ligand occur at random throughout the crystal.

Thermal motion

The thermal parameters for all the atoms are listed in Table 2(a) and (b). The water molecules which are coordinated to copper display large thermal motion and have multiplicities less than unity. Since thermal vibration and multiplicity are closely correlated, it is difficult to decide when a B value is no longer physically meaningful but rather reflects partial occupancy. The two water oxygen atoms $O(41)$ and $O(42)$ have average
B values of $15 \cdot 0 \AA^{2}$ and $12 \cdot 6 \AA^{2}$ and multiplicities 0.50 and 0.75 , respectively. While $\mathrm{O}(41)$ is obviously in a partially occupied site, $\mathrm{O}(42)$ is probably in a fully occupied site.

The effect of disorder on the thermal parameters of the adenine molecules can be seen in Fig. 10 where the thermal ellipsoids at 50% probability are plotted in the plane of the ligands. The larger fraction of disorder in

Fig.9. Ligand pairs (1) and (2) displayed in their alternative orientations relative to the structure in Fig. 8.

Fig. 10. Thermal ellipsoids as viewed normal to the plane of the ligands.
ligand (1) has been compensated for by an apparently larger thermal vibration in the plane of the ligand.

The author thanks Dr Roland Weiss for a sample of the compound, Dr Ken Emerson for carrying out the magnetic measurements, and cand. real.Jorunn. Sletten and Dr Lyle H. Jensen for helpful discussions. He also acknowledges a fellowship from the Royal Norwegian Council for Scientific and Industrial Research and financial support under Grant AM 3288 from the National Institutes of Health.

References

Alexander, L. E. \& Smith, G. S. (1964). Acta Cryst. 17, 1195.

Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, O., MacGlllavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.
Boudreaux, E. A. (1963). Trans. Faraday Soc. 59, 1055.
Cheney, G. E., Freiser, H. \& Fernando, Q. (1959). J. Amer. Chem. Soc. 81, 2611.
Dubicki, L. \& Martin, R. L. (1966). Inorg. Chem. 5, 2203.
Emerson, K. (1968). Private communication.
Figgis, B. N. \& Martin, R. L. (1956). J. Chem. Soc. p. 3837.

Figgis, B. N. \& Martin, D. J. (1966). Inorg. Chem. 5, 100.

Freeman, H. C. \& Szymanski, J. T. (1967). Acta Cryst. 22, 406.

Hansen, A. E. \& Ballhausen, C. J. (1965). Trans. Faraday Soc. 61, 631.
Harker, T. R. \& Freiser, H. (1958). J. Amer. Chem. Soc. 80, 1132.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Megaw, H. D. (1968). Acta Cryst. B24, 149.
Niekerk, J. N. van \& Schoening, F. R. L. (1953). Acta Cryst. 6, 227.
O'Connor, B. H. \& Maslen, E. N. (1966). Acta Cryst. 20, 824.

Orgel, L. E. (1958). Disc. Faraday Soc. 26, 138.
Sim, G. A. (1958). Acta Cryst. 11, 123.
Sletten, E. (1967). Chem. Comm. p. 1119.
Sletten, E., Sletten, J. \& Jensen, L. H. (1969). Acta Cryst. To be published.
Stewart, J. M. (1964). Crystal Structure Calculations System, Computer Science Center, Univ. of Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Trotter, J. (1958). Acta Cryst. 11, 355.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870.
Watson, R. E. \& Freeman, A. J. (1961). Acta Cryst. 14, 123.
Weiss, R. \& Venner, H. (1963). Hoppe-Seyle. Z. 333, 169.
Weiss, R. \& Venner, H. (1966). Hoppe-Seyle. Z. 345, 122.

Determination of the Crystal Structure and the Absolute Configuration of (+)-2,2'-Dihydroxy-1,1'-Binaphthalene-3,3'-Dicarboxylic Acid Dimethyl Ester Bromobenzene Solvate

By Hiroshi Akimoto and Yoichi Iitaka
Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo, Japan

(Received 27 July 1968)
In order to establish the absolute configuration of binaphthyl derivatives, an X-ray diffraction study on the crystal structure of (+)-2, 2^{\prime}-dihydroxy-1, 1^{\prime}-binaphthalene- $3,3^{\prime}$-dicarboxylic acid dimethyl ester bromobenzene solvate has been carried out. The crystals are monoclinic, space group $P 2_{1}$ and the lattice constants are: $a=15 \cdot 78 \AA, b=9 \cdot 22, c=9 \cdot 12, \beta=97 \cdot 0^{\circ}$. The unit cell contains two molecules together with two molecules of bromobenzene. The structure was solved by the heavy atom method using the bromine atoms of the solvate molecules. Refinement was carried out by the block-matrix least-squares method for 1213 observed reflexions including anisotropic temperature factors. The final R value was $0 \cdot 101$.

It was found that the two naphthyl groups are twisted from the exact cis-conformation by an angle of $76^{\circ} 38^{\prime}$. The absolute configuration was determined by utilizing the anomalous dispersion effect of the bromine atom for $\mathrm{Cu} K \alpha$ radiation, showing that the molecule has the (R)-configuration.

Introduction

It has been shown that the restricted rotation about the single bond joining the two benzene rings in biphenyl derivatives produces a pair of optical enantiomers, where the molecule cannot readily exist in a planar form because of the steric interference of the
substituents. The term atropisomerism is often used to denote such kinds of stereoisomerism (Eliel, 1962). In many cases the resolution of the optically active forms is possible provided that the rate of interconversion of the enantiomers is sufficiently slow. The determination of the absolute configuration of this type of compound is very interesting because the optical rotation

[^0]: * Permanent address: Department of Chemistry, University of Bergen, Bergen, Norway.

